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Abstract

This paper presents a newly developed quasi arbitrary Lagrangian–Eulerian finite element method (QALE-FEM) for
simulating water waves based on fully nonlinear potential theory. The main difference of this method from the conven-
tional finite element method developed by one of authors of this paper and others (see e.g. [Q.W. Ma, G.X. Wu, R.
Eatock Taylor, Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part
1: Methodology and numerical procedure and Part 2: Numerical results and validation, Int. J. Numer. Methods Fluids,
36 (2001) 265–308.] and [G.X. Wu, Z.Z. Hu, Simulation of nonlinear interactions between waves and floating bodies
through a finite-element-based numerical tank, Proc. R. Soc. A 460 (2004) 2050, 3037–3058.]) is that the complex mesh
is generated only once at the beginning and is moved at all other time steps in order to conform to the motion of the free
surface and structures. This feature allows one to use an unstructured mesh with any degree of complexity without the
need of regenerating it every time step, which is generally inevitable and very costly. Due to this feature, the QALE-
FEM has high potential in enhancing computational efficiency when applied to problems associated with the complex
interaction between large steep waves and structures since the use of an unstructured mesh in such a case is likely to be
necessary. To achieve overall high efficiency, the numerical techniques involved in the QALE-FEM are developed,
including the method to move interior nodes, technique to re-distribute the nodes on the free surface, scheme to calcu-
late velocities and so on. The model is validated by water waves generated by a wavemaker in a tank and the interaction
between water waves and periodic bars on the bed of tank. Satisfactory agreement is achieved with analytical solutions,
experimental data and numerical results from other methods.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

With operations in the oil and gas industry moving to deeper waters, offshore structures are more likely
to be exposed to very harsh environments and extremely steep waves and therefore undergo large motions.
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As a result, there is increasing interest in numerically simulating nonlinear water waves and their interaction
with structures. There are two classes of theoretical models for cases with finite water depth in common use
for numerical simulations. One is based on the general flow theory and the other is based on the potential
theory. In the first class of models, the Navier–Stokes and continuity equations together with proper
boundary conditions are solved, while in the second class, the Laplace equation with fully nonlinear bound-
ary conditions is dealt with. For brevity, the first class of models will be called NS Model and the second
called FNPT (representing fully nonlinear potential theory) Model in the paper.

In the community of researchers who use the NS Model, three formulations have been suggested: Eule-
rian, Lagrangian and arbitrary Lagrangian–Eulerian (ALE) formulations. In the Eulerian formulation, the
computational mesh is fixed and the fluid moves relative to it (see for example [1–4]). Use of this formula-
tion can handle, with relative ease, the large distortions of interfaces between two different materials by
employing proper interface capturing techniques (such as volume of fluids, level set method and so forth)
but possibly at the expense of solving a larger domain than necessary, solving an extra governing equation
and smearing the interfaces and flow details near the interfaces. In addition, it seems to be difficult to handle
cases with interfaces of three different materials, such as those with floating bodies in waves. In the
Lagrangian formulation (see for instance [5]), all nodes follow their corresponding fluid particles. Due to
this feature, the formulation allows sharp tracking of interfaces between different materials. However, if
large distortions of the fluid domain occur, certain nodes may become too close to or too far from others
and consequently lead to a breakdown of the computing process if remeshing is not performed. The arbi-
trary ALE formulation is a hybrid approach, in which the computational mesh does not need to adhere to
fluid particles or to be fixed in space but can be moved arbitrarily. Therefore, the ALE formulation can
make use of the merits of both the Lagrangian and Eulerian formulations and alleviate many of their draw-
backs. Specifically, the interface can be precisely tracked without necessarily remeshing. Of course, the
nodes have to be moved in order to conform to the deformation or distortion of interfaces or boundaries
and the governing equations are made a bit more complex to account for the moving velocities of mesh.
The ALE formulation has been discussed and used in many publications. Only a few are listed here as
examples [6–8]. Various numerical methods, such as finite element, finite volume and finite different meth-
ods have been used to solve the Navier–Stokes and continuity equations together with one of three formu-
lations to investigate the nonlinear water waves and their interaction with fixed structures. However, no
matter which method is used, solving NS equations is always a time consuming task.

Due to this fact, the FNPT model has been adopted in many publications for problems associated with
the nonlinear water waves and their interactions with structures. In this model, viscosity is ignored. The
governing equations are dramatically simplified and so they need much less computational resource to
be solved than in the NS Model. Comparison with experimental data [9–12] has shown that the results ob-
tained by using this model are accurate enough if breaking waves do not occur and/or if structures involved
are large, implying that to neglect the viscous effects is acceptable in these cases. Therefore, the FNPT Model
instead of the NS Model should be employed if a case considered falls in this category, i.e., without wave
breaking and/or with large structures. The problems formulated by this model are usually solved by a time
marching procedure suggested by Longuet-Higgins and Cokelet [13]. At each time step, a boundary value
problem based on the Laplace equation together with boundary conditions is solved. Then the variables on
the free surface and on the surface of structures are updated using the kinematic/dynamic free surface con-
ditions and dynamic equations of structures, respectively, which give the required boundary values for the
solution at the next time step. The procedure can be repeated in principle for any desired period of time. In
this procedure, the key task is to solve the boundary value problem by using an efficient numerical method.
To do so, boundary element methods (BEMs) have been used in many publications, such as [10,14–17], and
have produced many impressive and useful results. Finite element methods (FEMs) have also been devel-
oped and used for two and three dimensional problems, see for instance [11,12,18–24]. Both methods have
been proved quite efficient but the FEMs need less memory and so are computationally more efficient, as
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indicated by Wu and Eatock Taylor [19] and Ma et al. [11]. The reason is that although there are far fewer
unknowns when using the BEMs than using the FEMs, nonzero elements in the matrix for the BEMs may
be more than those in the matrix for the FEMs since any node in the BEMs is affected by all others, while in
the FEMs only by those connected with the node. A drawback of the FEMs, however, is that an unstruc-
tured mesh is generally required for complex interaction between water waves and structures and may need
to be remeshed at every time step to follow the motion of waves and/or structures. Repeatedly regenerating
such a mesh can make the required CPU time prohibitive in a simulation of several thousands steps on a
normal workstation. In order to reduce the time spent on the remeshing, simple structured mesh has been
used in [11,12]. For the same purpose, Wu et al. [22] have recently employed a hybrid mesh. In their ap-
proach, a 2D mesh in a horizontal plane (say, the free surface at t = 0) is first generated and then vertical
lines are drawn to construct a 3D mesh. The 2D mesh is formed by combining an unstructured mesh in a
region near structures with a simple structured mesh (similar to [23]) in other regions. This is a sensible
approach but restricted to cylindrical structures without roll and pitch motions.

In this paper, the FNPT model and the FEM are still employed. However, a new way is pioneered to
alleviate the bottleneck caused by the mesh regeneration. The main idea is that the complex mesh is gen-
erated only once at the beginning and is moved at other time steps in order to conform to the motions of the
free and structure surfaces. In this approach, the mesh can be generated by any generator and can have any
complexity, any structure and any desired distribution. Because the mesh generator is used only once in a
simulation of several thousands time steps, the CPU time spent on mesh generation is not an important
matter since it may be only a small proportion of total computational time even it is quite long (say several
minutes). In addition, the generator is not necessarily included in the main code. The idea of moving mesh
is borrowed from the ALE formulation for the NS Model. However, the velocities of the moving mesh do
not need to be considered in governing equations in our approach. That is why this approach is called as
quasi arbitrary Lagrangian–Eulerian finite element method (QALE-FEM). It is obvious that the technique
for moving mesh in this approach is vital in order to achieve a good quality mesh at all time steps and to
avoid a large CPU requirement. A robust method will be developed herein for this purpose. As the velocity
potential, instead of the fluid velocity, is solved as unknowns, care must be taken in computing the velocity
based on the velocity potential due to the arbitrary and moving nature of the mesh. An efficient and accu-
rate technique will also be suggested for the velocity computation in this paper.

Although the QALE-FEM based on the FNPTModel can be used to deal with any wave/structure inter-
action problem without wave overturning/breaking, this paper focuses on the description of the method
and validates for cases without floating bodies. Applications to more general cases will be given in other
papers.
2. Mathematical model and numerical method

Without loss of generality, the computational domain is chosen as a rectangular tank, and the nonlinear
wave is generated in the tank by a piston-like wavemaker. The wavemaker is mounted at the left end (on the
negative side of the x-axis) and a damping zone with a Sommerfeld condition (see [11,12] for details) is ap-
plied at the right end of the tank in order to suppress the reflection, as sketched in Fig. 1. Arbitrary forms of
submerged bodies on the tank-bed may be included. A Cartesian coordinate system is used with the oxy

plane on the mean free surface and with the z-axis being positive upwards. Unless mentioned otherwise,
its origin will be located at the centre of the tank.

Similar to the usual formulation for the FNPT Model, the velocity potential (/) satisfies Laplace�s
equation
r2/ ¼ 0 ð1Þ
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Fig. 1. Sketch of fluid domain.
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in fluid domain. On the free surface z = 1(x,y, t), the velocity potential satisfies the kinematic and dynamic
conditions:
Dx
dt

¼ o/
ox

;
Dy
dt

¼ o/
oy

;
Dz
dt

¼ o/
oz

; ð2Þ

D/
Dt

¼ �gzþ 1

2
jr/j2; ð3Þ
in which g is the gravitational acceleration. The atmospheric pressure has been taken as zero in Eq. (3). On
all rigid boundaries, the velocity potential must satisfy
o/
on

¼~n � ~UðtÞ; ð4Þ
where ~UðtÞ and ~n is the velocity and the unit normal vector of the rigid boundaries, respectively. For the
specific case illustrated in Fig. 1, ~UðtÞ ¼ UxðtÞ on the wavemaker and ~UðtÞ ¼ 0 on other rigid boundaries.

The problem described by Eqs. (1)–(4) will be solved by using a time step marching procedure as outlined
in Section 1. At each time step, the shape of the free surface and the potential values on it as well as veloc-
ities on all rigid boundaries are known (given as initial conditions or calculated from the solution at pre-
vious time steps). Thus, at an instant, the boundary condition for the potential on the free surface can be
replaced by a Dirichlet condition
/ ¼ fp; ð5Þ

where fp is the potential values on the free surface at the instant. Therefore, the unknown velocity potential
in the fluid domain can be found by solving a mixed boundary value problem which is defined by Eqs. (1),
(4) and (5). After the solution is obtained, Eqs. (2) and (3) are then employed to update the position of and
the potential values on the free surface using the same method as in [11], which gives the new information
on the free surface for the solution at next time step. If floating bodies are included, the dynamic governing
equations of the bodies should be solved at this point to update the velocity in Eq. (4). Similar to [11], the
finite element method is used to solve the mixed boundary problems, in which the fluid domain is discretised
into a set of small tetrahedral elements and the velocity potential is expressed in terms of a shape function,
NJ(x,y,z):
/ ¼
X
J

/JNJ ðx; y; zÞ; ð6Þ
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where /J is the velocity potential at node J. Using the Galerkin method, Laplace�s equation with corre-
sponding boundary conditions can be discretised as
Z Z

8

Z
rNI �

X
J2SP

/JrNJ d8 ¼
Z
Sn

Z
NIfn dS �

Z Z
8

Z
rNI �

X
J2SP

ðfpÞJrNJ d8 ðI 62 SP Þ; ð7Þ
where SP represents the Dirichlet boundary (such as the free surface), on which the velocity potential fp is
known and Sn represents the Neumann boundary (such as the wavemaker), on which the normal derivative
of the velocity potential fn ¼~n � ~UðtÞ is given. It is noted that the term associated with the velocity potential
on the free surface has appeared on the right-hand side of Eq. (7). Wu and Eatock Taylor [18] have found
that this can ease the well-known singularity problem at the waterline between the free surface and rigid
boundaries. Eq. (7) can further be written in the matrix form
½A�f/g ¼ fBg; ð8Þ

where
f/g ¼ ½/1;/2;/3; . . . ;/I ; . . . �
T ðI 62 SP Þ; ð9Þ

AIJ ¼
Z Z

8

Z
rNI � rNJ d8 ðI 62 SP ; J 62 SP Þ; ð10Þ

BI ¼
Z
Sn

Z
NIfn dS �

Z Z
8

Z
rNI �

X
J2SP

ðfpÞJrNJ d8 ðI 62 SP Þ. ð11Þ
The algebraic equation (8) is solved using a conjugate gradient iterative method with SSOR preconditioner
and optimised parameters. Details about these have been discussed by Ma [24].
3. Mesh moving in QALE-FEM

As indicated in Section 1, the main task in the QALE-FEM is to move the mesh so as to accommodate
large variations in the fluid domain. In order to achieve high efficiency and accuracy of the computation,
the method to move the mesh should satisfy the following criteria:

� It must create satisfactory element shapes at all time steps.
� It must preserve reasonable refinement and distribution in regions of interest, such as those close to the
free surface and structures.

� It must be computationally efficient.

Many methods to move the mesh in the ALE formulation have been suggested for the NS model. Often-
used methods include the weighted average method [25], the transfinite mapping method [26], the method
based on the solution of a linear elastic equation to define the new positions of nodes [8], the method based
on the solution of Laplace�s equation to find the velocity of mesh [27] and so forth. These methods either
tend to make the mesh uniform, need a special mesh structure or require much computational time and so
they are not perfect options satisfying the above criteria.

Another kind of method for moving the mesh, called the spring analogy method, has also been devel-
oped for the NS model, and mainly applied to aerodynamic problems without the free surface. The main
idea behind the method is that nodes in a mesh are considered to be connected by springs. The whole mesh
is then deformed like a spring system. The spring system may comprise linear springs along each element
edge [28,29] or may consist of both linear and torsional springs [30–32], the latter applying a moment to
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each node. The distinct advantages of the linear spring analogy system include requiring little CPU time
and being very simple and easy to implement. The system has been successful in cases without extremely
large distortion of elements and without nearly flat elements. Nevertheless, for the cases with very severely
distorted and/or nearly flat elements, the system may produce negative volume elements. This drawback
may be eliminated by adding torsional springs to the system. However, the CPU time required to deal with
the torsional springs is significantly increased, particularly for three-dimensional cases.

In order to achieve a reasonable quality of the mesh at all time steps and avoid excessive computational
time spent on moving the mesh, the following strategies are adopted to move the mesh in this paper:

� Ensuring that there are no nearly flat elements in the initial mesh.
� Considering interior nodes and boundary nodes separately.
� Considering nodes on the free surface and on rigid boundaries separately.
� Using relatively stiffer springs near the moving boundaries, such as the free surface.

The quality of initial mesh is to be achieved using mesh generators based on available technologies, such
as mixed Delaunay triangulation and the advancing front technique [33]. The interior nodes are moved by
using the linear spring analogy method. This method has been developed in computational aerodynamics,
see e.g. [28], as indicated above. For completeness, it is only briefly described here. More details can be
found in the references given. In this method, the nodal displacement are determined by
D~ri ¼
XNi

j¼1

kijD~rj
XNi

j¼1

kij

,
; ð12Þ
where D~ri is the displacement at node I; kij is the spring stiffness and Ni is the number of nodes that are con-
nected with node I. Eq. (12) can be interpreted as that the resultant spring forces acting on node I by all springs
remain zero after all nodes are displaced. The value of the spring stiffness in the equation is usually chosen to be
inversely proportional to the distance between two nodes in other applications [28,30]. For the applications
concerned with in this paper, it is found that the spring stiffness is best taken to be
kij ¼
1

l2ij
ec½1þðziþzjÞ=2d�; ð13Þ
where lij is the distance between nodes I and J; zi and zj are the vertical coordinates of nodes I and J; d is the
water depth; and c is an coefficient that should be assigned a larger value if the springs are required to be
stiffer at the free surface. The value of c is taken as 1.7 in this paper but further numerical tests may be
needed to choose the value of c based on the wave steepness. To solve Eq. (12) for all interior nodes, iter-
ation is required at each time step but it takes only a little CPU time according to our experience. The nodes
at all rigid boundaries are also moved using the spring method.
3.1. Moving the nodes on the free surface

Special attention must be paid to nodes on the free surface because they play a decisive role in producing
results of high accuracy for water wave problems. In order to track precisely the free surface, the node posi-
tions on the surface are determined by physical boundary conditions in Eq. (2), i.e., following the fluid par-
ticles, at most time steps. As indicated above, however, the nodes updated in this way may become too close
to or too far from each other. To prevent this from happening, these nodes are relocated at some time steps
(e.g., every 40 time steps). For the purpose of relocation, they are grouped into those on curved waterlines,
such as the intersecting line between the free surface and vertical walls or the wavemaker, and those that do
not lie on the waterlines. The nodes in the latter group are called inner-free-surface nodes.
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The nodes in the two groups are treated separately. The nodes on the waterlines will be re-distributed by
adopting a principle for self-adaptive mesh, see [34] for an example. The basic idea is to make the weighted
arc-segment lengths between two successive nodes a constant along the curved waterlines, i.e.
-iDsi ¼ Cs; ð14Þ

where - is a weighted function, Dsi the arc-segment length between two successive nodes and Cs a constant.
The value of Cs is determined by using the fact that the total length of the curved waterline (Ls), should
equal the sum of all arc-segment lengths, which gives
Cs ¼ Ls

X 1

-i

X 1

-i
¼ Ls=vs

�
; ð15Þ
where vs =
P

1/-i. Therefore, if the weighted function is given, the arc-segment lengths can be evaluated by
Dsi ¼
Ls

-ivs
. ð16Þ
The distribution of Dsi is controlled by the weighted function. An arc-segment tends to be smaller for a
larger value of the weighted function or vice versa. In [34], the weight function is specified as
- ¼ 1þ a~f
b
; ð17Þ
where a and b are two coefficients and ~f is the function of the gradient of a variable, such as velocity. For
the applications considered in this paper, ~f is taken as a function of the curvature of the curved waterline,
i.e., it is given by
-i ¼ 1þ a½ðji � jminÞ=ðjmax � jminÞ�b; ð18Þ

where ji is the curvature of the curve Dsi; jmax and jmin are the maximum and minimum curvatures of the
waterline, respectively. It is suggested in [34] that the coefficient a is determined by the arbitrarily specified
maximum (Dssmax) and minimum (Dssmin) length of the arc-segment elements, i.e.
a ¼ Dssmax

Dssmin

� 1. ð19Þ
In our applications, it is expected that the arc-segment length is smaller in areas of shorter waves and is
larger in areas of longer waves. Hence, it is reasonable to specify
Dssmax

Dssmin

¼ Lmax

Lmin

; ð20Þ
where Lmax and Lmin are the maximum and minimum wave lengths, repetitively, which can be roughly esti-
mated for problems considered. It should be noted that a subjected to Eq. (20) becomes zero for waves with
single wavelength and so the arc-segment lengths are a constant after the nodes are re-distributed. Such a
distribution of nodes is reasonable for these cases. The evaluation of b is not so straightforward. In [34], this
value is determined in such a way that the minimum length of arc-segment elements obtained by Eq. (16) is
approximately equal to the specified Dssmin To achieve this, iteration must be performed. According to our
numerical tests, a value of b in the range of 0.5–1.0 can lead to a satisfactory distribution of Dsi when Lmax/
Lmin < 10.

Once the nodes on the waterlines are redistributed, the inner-free-surface nodes will be moved by the
spring analogy method, as used for the interior nodes. Nevertheless, there exists a difficulty, that is, how
to ensure the nodes after moved are still on the free surface represented by discrete points. For simplicity,
a method to achieve this is that the nodes are first moved in the projected plane of the free surface, i.e.,
calculating the values of x and y of new nodes using the spring analogy system, and then the elevations
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of the free surface corresponding to them are evaluated by an interpolating method. In order to take into
account of the local gradient of the free surface, the spring stiffness in moving the nodes in x- and y-direc-
tions, however, is determined, respectively, by
kðxÞij ¼ 1

l2ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o1

ox

� �2
s

and kðyÞij ¼ 1

l2ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o1

oy

� �2
s

; ð21Þ
where o1/ox and o1/oy are the local slopes of the free surface in the x- and y-directions, respectively. Inclu-
sion of free-surface slopes in the spring stiffness ensures that the spring forces acting on a node are propor-
tional to relative displacements between nodes measured along the curved free surface rather than along
horizontal directions.

Two interpolating methods may be used to estimate the free surface elevations (i.e. coordinate z). One is
to find which element each new node belongs to by using the coordinate x and y of the new nodes and then
estimate the values of z using the shape function defined on this element. This method is similar to that one
used for remeshing in [11]. The other is based on a moving least square (MLS) method, in which the value
of z is determined by using the information at a group of old nodes in such a way that the error is mini-
mised. This method has been frequently used to form the interpolating function in meshless methods and
details about it may be found in, e.g. [35]. Both of these two methods work well, though the latter needs
more computational time and leads to rather more accurate results according to our numerical tests. In this
paper, the MLS method is used. Other information, such as the velocity potential at the new nodes is also
estimated by the method. It should be noted that the technique for moving the inner-free-surface nodes de-
scribed here may not work if overturning/breaking waves are involved, which are beyond our consideration
based on the FNPT model.
4. Velocity calculation on the free surface in QALE-FEM

It is crucial in simulating water waves to evaluate the fluid velocities on the free surface because they are
used to update the information on the surface every time step. The velocity at a node may be estimated by
using a finite difference technique from the velocity potentials at this node and nodes connected to it. The
approach is quite efficient. However, since the neighbours of a node on the free surface are distributed
either on or below the surface, the normal (or nearly vertical) component of the velocity estimated by
the approach generally possesses relatively low accuracy, which is understandable from the fact that back-
ward or forward finite difference schemes approximating a derivative have a lower order of accuracy than a
central scheme. In order to enhance the overall accuracy, Ma et al. [11] suggested that the horizontal com-
ponents of the velocities at nodes on the free surface are evaluated separately from their vertical compo-
nents. For estimating the vertical component, they developed a three-point formula that needs the
velocity potentials at the node considered and at two other nodes on the same vertical line as this node,
which are next but just below the free surface. After the vertical component is found, the horizontal com-
ponents are computed by averaging those given by the difference of the velocity potentials at all neighbour
nodes on the free surface. This approach is very efficient and accurate. However, it is limited to structural
meshes with vertical grid lines.

In this section, the above approach will be extended to unstructured meshes generally without vertical
grid lines. The basic idea of the new approach is similar to the above approach. The main differences
are that (1) the vertical line is replaced by a normal line perpendicular to the free surface at the node con-
sidered; (2) the two nodes on the vertical line are replaced by two points on the normal line, which do not
necessarily coincide with any nodes; and (3) the normal component of the velocity is found before comput-
ing the components in tangential directions. More details are given below.
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Consider node I on the free surface of an unstructured mesh with nodes Jk (k = 1,2,3, . . . ,m) as its neigh-
bours on the free surface. A normal line is drawn from node I to the inner domain and two points PI1 and
PI2 are chosen on this line, as shown in Fig. 2. The distance between I and PI1 is hI1 and the distance be-
tween PI1 and PI2 is hI2. The normal component ð~vnÞ of the velocity at node I is calculated by
~vn ¼
2

3hI1

2hI1 þ hI2
hI1 þ hI2

þ 1

2

� �
/I �

2

3hI2
þ 1

hI1

� �
/PI1

þ 2

3hI2

hI1
hI1 þ hI2

� �
/P I2

� �
~n; ð22Þ
where~n is the unit normal vector of the free surface at node I. This equation is similar to Eq. (16) in [11].
Nevertheless, /P I1

and /PI1
here are not nodal values and may be found using the method discussed in Sec-

tion 4.1 below. The normal vector is taken as the average of the normal vectors of all surface elements (such
as I–J1–J2) with node I as one of their nodes.

In order to estimate the velocity in tangential directions, the unit tangential vector ð~sÞ is required. The
vector may be determined by using~sx ?~n; ~sxk~ex; ~sy ?~n and ~syk~ey , where~ex and ~ey are the unit vectors in
the x- and y-directions, respectively. The tangential components of the velocity are related to the difference
of the velocity potential between any pair of nodes containing node I and one of nodes J1,J2, . . . ,Jm by
~vsx �~lIJk þ~vsy �~lIJk ¼~lIJk � r/�~vn �~lIJk ðk ¼ 1; 2; 3; . . . ;mÞ; ð23Þ
where ~lIJk is the unit vector from node I to node Jk; ~vsx and ~vsy represent the velocity components in
~sx and~sy directions, respectively. The number (m) of equations in Eq. (23) is usually larger than 2, the num-
ber of unknowns. In order to use all the equations and enhance the accuracy, the least square method is
adopted to find ~vsx and ~vsy . Once the three components are obtained, the velocity components in x-, y-
and z-directions can readily be computed by projecting them on these directions.

4.1. Velocity potential at points PI1 and PI2

There are two issues associated with the velocity potential at points PI1 and PI2 involved in the above
velocity computations. One is how to choose the positions of the points and the other is how to estimate
the values of the potential at these points. According to our experience, point PI1 should be located in the
element connected to node I and point PI2 should be in another element next to the previous element in the
normal direction. This is rational from simple reasoning. If the two points are too close to node I so that
they fall into one element, the values of potential calculated at these points are based mainly on the infor-
mation of one element and so the estimated difference by using these values may possess low accuracy. On
the other hand, if the points are too far from each other or from node I, the error of velocity estimated using
Eq. (22) may also be big because the error increases with distances between them.

In order to ensure the two points to be in the desired elements, hI1 and hI2 in Eq. (22) can be determined
by
hI1 ¼ hI2 ¼ e�h; ð24Þ
I J2

Jm PI1 J1

PI2

Fig. 2. Sketch of nodes around node I.
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where e is the coefficient and �h is the distance from node I to the intersecting point of the normal line I–PI1–
PI2 with the element surface formed by other three interior nodes of the element connected to node I.
Numerical tests show that e may be a value in the range of 0.6–0.9 and that numerical results obtained
are not sensitive to its specific value. The numerical tests also show that the value of �h does not necessarily
have to be calculated every time step. In fact, it is calculated only at the first time step for cases presented in
Section 5.

With the values of hI1 and hI2 determined, the values of the potential at points PI1 and PI2 can be esti-
mated either by using the shape function defined on the elements or by the MLS method mentioned above.
The former method needs less computational time but gives less accurate values, particularly in cases with
large gradients. The latter requires more computational time but results in more accurate potential values.
If the waves to be simulated are very steep, the latter should be used; otherwise the former would be the
better choice. Because we aim at steep waves, the latter is used in this paper.

4.2. Special treatment for nodes near solid boundaries

It may become impractical to use the above method to calculate the velocity for nodes near a solid
boundary because the normal line I–PI1–PI2 may intersect with the solid boundary (see Fig. 3). If this hap-
pens, either point PI2 is put outside the fluid domain if hI1 and hI2 are still estimated by Eq. (24) or the two
points (PI1 and PI2) are contracted into one element. Both situations may degrade the results.

In order to avoid such problems, it is proposed that the normal line (coinciding with vector~n in Fig. 3) at
a node near a solid boundary is replaced by a line (coinciding with vector~nb) obtained by rotating the nor-
mal line to the direction perpendicular to the normal vector, passing the node considered, of the boundary
surface. Correspondingly,~s is replaced by~sb that is determined by~nb; ~ex and ~ey using the similar method to
that for~s. After doing so, Eqs. (22) and (23), by substituting~nb and ~sb for~n and ~s, are still used to compute
the velocity at the node. Using this treatment, the velocity components in x-, y-, and z-directions are di-
rectly obtained when the solid boundary is vertical. It should be noted that this treatment may not work
well when the angle between the free surface and the solid boundary becomes very small. The situation with
very small angles can occur when the wave tends to overturning, which is not considered in this paper, as
indicated above.
5. Numerical validations

In this section, the QALE-FEM method is validated by comparing its numerical predictions with
analytical solutions and published results using other methods or experiments. Two kinds of problems
are considered: one is nonlinear water waves (regular and random) generated by a wavemaker in a tank;
and the other is the interaction between the water waves and periodic bars on the tank-bed. For all the cases
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in this section, the maximum and minimum wave lengths in Eq. (20) are assumed to be the same. In the
following, all parameters with a length scale are nondimensionalised by the water depth d and other param-
eters by
Fig. 5.
solutio
t ! s
ffiffiffiffiffiffiffiffi
d=g

p
and x ! x

ffiffiffiffiffiffiffiffi
g=d

p
.

5.1. Water waves generated by a wavemaker

Water waves generated by a piston wavemaker in the tank are considered in the first instance. The waves
may be monochromatic, bichromatic and random depending on the motion of the wavemaker. The meshes
used are similar to that in Fig. 4 but much finer.

The cases of monochromatic waves are first modelled, for which the motion of the wavemaker is gov-
erned by
SðsÞ ¼ �a cosðxsÞ; ð25aÞ

UðsÞ ¼ ax sinðxsÞ; ð25bÞ

where S(s) is the displacement of the wavemaker, U(s) is its velocity, a and x are, respectively, its amplitude
and frequency. When the amplitude of the wavemaker is very small, the steepness of the generated waves is
also very small. The numerical results for such a case can be compared with the linearised analytical solu-
tion in [42]. For this purpose, a case with a = 0.0041 and x = 1.45 is simulated in a tank of length L � 14.7.
The mesh is unstructured and the number of elements is about 78,060. The time step is 0.021666, about 200
steps in each period. The wave profiles at two different instants (t = 10T and 15T, where T = 2p/x is the
Fig. 4. Illustration of initial mesh used for wavemaker problems.
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period) are plotted in Fig. 5, which shows that the numerical results are in very good agreement with the
corresponding analytical solution.

The numerical results in Fig. 5 are also assessed by estimating relative errors. The relative error (Er) is
defined as
Fig. 6.
(b) s =
Er ¼
k1� 1ak
k1ak

;

where k1k ¼
R
Ae
12 dA, 1a is an analytical wave elevation and Ae is the area over which the error is estimated.

Because the accuracy of the waves within the damping zone should not be of concern, Ae equals the area of
the free surface minus the part of the damping zone. The relative errors evaluated in this way for the results
in Fig. 5 are less than 0.5%.

The behaviour of the QALE-FEM is then investigated by simulating waves of a larger amplitude and
strong nonlinearity. The amplitude of the wavemaker is taken as 0.082. The frequency (x) and tank length
are the same as that in Fig. 5. The steepness of the generated waves is about 0.08. For such steep waves, the
linearised solution should not be considered valid. In order to validate the QALE-FEM in this case, its re-
sults are compared with those obtained by using conventional FEM described in [11]. The length of the time
step (also 200 steps in each period) is the same in both methods, whereas the type of mesh and the number
of elements are different. When using the conventional FEM [11], the mesh is structured and the number of
elements is 75,264. When using the QALE-FEM, the mesh is unstructured and the number of elements is
about 78,060. The latter is also tested using a larger number of elements (133,632) but no significant differ-
ence in results was found. The wave profiles at time s = 10T and 15T from these two methods are depicted
in Fig. 6. The agreement between them is quite good. The relative error estimated by the same method for
Fig. 5 is found to be less then 1%.

The QALE-FEM has also been used to simulate bichromatic waves. These waves are generated by the
following motion of the wavemaker:
SðsÞ ¼ �a1 cosðx1sÞ � a2 cosðx2sÞ; ð26aÞ

UðsÞ ¼ a1x1 sinðx1sÞ þ a2x2 sinðx2sÞ; ð26bÞ

where a1 and a2 are the amplitudes corresponding to the components with frequencies x1 and x2, respec-
tively. As an example, the values for these parameters are assigned as a1 = 0.016, a2 = 0.5a1, x1 = 1.45 and
x2 = 2.03. The tank has the same length and the mesh is the same as for Fig. 6. The time step is about
0.01548, about 200 steps in each period given by 2p/x2. For this case, the wave history recorded at a fixed
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Comparison of wave profiles for x = 1.45 and a = 0.082 (solid line: QALE-FEM; dots: conventional FEM [11]). (a) s = 10T;
15T.
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point is plotted in Fig. 7, together with the results from the conventional FEM. Again, it is observed that
results from the two methods are in very good agreement and the relative error is in the same level as for
Fig. 6.

As another example, the QALE-FEM is applied to simulating random waves. In order to compare with
the experimental results given by Nestegard [43], the same motion of the wavemaker as those described in
[43] is used, which is specified by a Fourier series with different scaling factors (arandom). The water waves
generated by this motion are focused at a point in the tank to form a large and steep wave. To model this
case, the tank length is chosen as 20. The time step is about 0.0242 and the number of elements is 183,240.
Fig. 8 shows the wave histories recorded at x = 3.436 (where the wave is expected to focus) together with
the experimental data provided by Nestegard [43] for the scaling factors equal to 0.612 and 0.749. It can be
seen that the agreement of the numerical results with the experimental data is satisfactory. Particularly, the
largest wave crests are excellently predicted by the numerical analysis.

5.2. Reflection due to periodic bars on the seabed

The QALE-FEM is now employed to simulate the interaction between waves and periodic bars on the
seabed. Since the experimental demonstration by Heathershaw [36], the problem has been studied by many
researchers using various mathematical models with particular attention paid to Bragg resonance that leads
to large reflecting waves. These models were developed by making various approximations, including linear
perturbation approach [37], multiple scale analysis [38], mild-slope approach [39], fully linear analysis [40]
and so on. The results obtained from these models agreed well with experiments carried out by Heather-
shaw [36] and Davies and Heathershaw [37] in cases with small surface wave and bar wave steepness.
Liu and Yue [41] performed a fully nonlinear analysis using a spectral method and pointed out that the
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Fig. 8. Comparison of wave histories at x = 3.436 with measured data given by Nestegard [43]. (a) (arandom = 0.612); (b)
(arandom = 0.749).
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nonlinear effects may cause the downshift of reflection coefficient curves compared with results from the
simplified models such as in [38].

In this section, the numerical results obtained by using the QALE-FEM will be compared with published
experimental data and analytical/numerical solutions, with particular attention paid to the reflecting wave
properties near the Bragg resonance. The main purpose of the comparisons is to further validate the new
numerical method. Apart from this, certain results corresponding to larger wave amplitudes will also be
presented in order to illustrate the nonlinear effects on the reflection.

The two cases to be considered are the same as those in [37], i.e., bar patches with 4 and 10 sinusoidal
bars on the seabed, respectively. The wave generator motions are as specified by Eq.(25) For ease of
description, the side of the bar patch near the wavemaker is called the front side, and the other side the
lee side. The initial meshes used are similar to that illustrated in Fig. 9 but much finer. The reflection coef-
ficients, defined by Kr = Ar/Ai, where Ar and Ai are the amplitudes of reflecting and incident waves, are cal-
culated from wave histories recorded at a series of points along the tank by using the same method as in
[37], in which it is assumed that the wave consists of incident and reflected waves with the same frequencies.
It should be noted that for the purpose of computing the reflection coefficients, the time history to be used
at a point must start from the time when the wave reflected from the lee side has arrived at the point and
end before the wave reflected from the front side travels back to the point after interacting with the wave-
maker. Otherwise, either the reflecting waves are not fully developed at the point or affected by the
re-reflecting waves from the wavemaker. The start (tst) and end (tend) times may be estimated by
tst ¼ ðLwp þ 2Lbp2Þ=Cg; ð27aÞ

tend ¼ ð3Lwp þ 2Lbp1Þ=Cg; ð27bÞ

where Cg is the group velocity of the water wave; Lwp is the distance from the wavemaker to the point con-
sidered; Lbp1 and Lbp2 are the distances from the point to the front and lee sides of the bar patch,
respectively.

First considered are the cases with small wave amplitudes. For these cases, the water waves are generated
by small amplitudes (a = 0.02 for 4 bars and 0.005 for 10 bars) and the resulting wave steepness (H/k, where
H and k are the water wave height and length, respectively) is less than 0.002. In order to compare our re-
sults with experimental data in [37], the dimensionless bar wave number (kbd) is assigned a value of p/10,
the ratios of the bar amplitude (ab) to the water depth are taken, respectively, as ab/d = 0.32 for 4 bars and
ab/d = 0.16 for 10 bars. The wave histories recorded at two points about 5 bar-lengths before the front side
of the bar patch are used. Reflection coefficients near the resonant condition (2k/kb = 1, where k is the
water wave number) are presented in Fig. 10 together with experimental data from [37]. For the case with
10 bars, the nonlinear numerical results from [41] and analytical results from the simplified model [38] are
also included. For the case with 4 bars, the analytical results from [40] are plotted apart from the experi-
mental and our numerical results. From Fig. 10(a) for this case, it can be seen that the numerical results
obtained by using the QALE-FEM method agree well with the analytical results given in [40] and satisfac-
Fig. 9. Illustration of initial mesh for scattering problems due to periodic bars.
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torily with experimental data in [37]. Fig. 10(b) for 10 bars indicated that our numerical results are almost
identical to those from [41] and closer to the experimental data than the analytical solution based on the
simplified model [38] on the side of 2k/kb > 1. On the side of 2k/kb < 1, our results differ slightly from
[41] but are closer to the experimental data in [37] and the analytical results from the simplified models [38].

To further show the properties of the reflected waves, the wave profiles at different instants for 4 bars are
plotted in Fig. 11, in which the coordinate system is shifted so that its origin is at the centre of the bar patch,
and the bar patch is located in the range of �2 < x/kb < 2 (kb = 2p/kb). It can be observed that when the
incident wave reaches the bars, the reflected wave begins to be produced. The reflected wave propagates
towards the wavemaker, is superimposed onto the incident wave and makes the resultant wave before
the front side (x/kb = �2) higher than the incident wave. It can also be observed that the wave after the
lee side (x/kb = 2) is considerably smaller than the wave before the front side, as expected.

In order to investigate the nonlinear effects, the case with 4 bars is simulated with different amplitudes.
All other parameters except for the amplitude are the same as those for Fig. 10. The reflection coefficients
corresponding to 2k/kb � 1 are presented in Fig. 12. In Fig. 12(a), the coefficients at different positions are
plotted together with the experimental results and analytical solution from [37]. It can be seen that the
reflection coefficients are close to the linear analytical solution when the amplitude is small but close to
the measured data when the amplitude is larger. In addition, the reflection coefficients before the front side
(x/kb = �2) tend to decrease with the increase of the amplitudes, though the reduction is not very signifi-
cant. To further show this trend, the numerical reflection coefficients at a point x/ab = �4 are plotted in
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Fig. 12(b). It should be noted that the method for estimating the reflection coefficients is the same as in
Fig. 10 in order to compare the results with those in [37]. However, when the nonlinearity becomes strong,
high-order waves are involved. The reflection coefficients found in this way correspond only to the wave
with the same frequency as the first-order wave and do not include the reflection of high-order waves.

In order to look at overall reflection of nonlinear waves by the bar patch, the shapes of wave profiles for
the same case are illustrated in Fig. 13. In this figure, the wave profiles for smaller and larger amplitudes are
depicted to show the different reflection properties. As can be seen, the wave profiles on the left of the bar
patch for the smaller amplitude seems to be formed by superimposing two harmonic waves with the same
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length travelling in opposite directions (so the wave become higher) but the shape is still similar to that of
harmonic waves. For the larger amplitude, the wave amplitude on the left of the bar batch seems not to be
changed dramatically by the reflection waves, instead, the shape of the waves is significantly modified.
6. Quality of mesh during simulation and efficiency of mesh moving

A significant development in this paper is to move, instead of re-generating, the unstructured mesh at
every time step when simulating water waves based on the FNPT model. As pointed out in Section 3,
the mesh obtained should have satisfactory element shapes and preserve the reasonable refinement and dis-
tribution in regions of interest, such as those close to the free surface and the bars on the tank-bed at all
time steps. In order to show the quality of mesh moved by using the method discussed in Section 3, Figs.
14 and 15 are presented for a case with 4 bars. Fig. 14(a) shows a part of the initial unstructured mesh while
Fig. 14(b) illustrates the enlarged mesh in areas near the two sides of the bar patch. Fig. 15 depicts the cor-
responding part of the mesh at about s = 332. These figures demonstrate that the original refinement and
distribution are kept and all elements are of satisfactory shape after long time simulation. In addition, neg-
ative elements, which are of concern when using the linear spring analogy method, do not appear in the
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simulation. This implies that the techniques used for moving mesh described in Section 3 work very well.
Nevertheless, certain changes in the sizes and shapes of individual elements are observed and expected
because the fluid domain varies with propagation of waves. It is these changes that make it possible to con-
form to the moving boundaries at all time steps and so to achieve satisfactory results as demonstrated in
Section 5.

Another concern about the QALE-FEM is the computational cost of moving the mesh. The efficiency of
moving the mesh can be deduced by comparing the computational time required by the QALE-FEM with
that required if a conventional FEM with unstructured mesh regenerated at each time step is employed. For
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this purpose, a case of nonlinear water waves without bars is tested, in which, a = 0.082, x = 1.45 and
L = 14.7. The fluid domain is discretised into about 133,632 elements. The time-step length is taken as
t = 0.021666 and 3000 steps are marched. The case is run on a PC (Pentium 2.53 GHz processor, 1G
RAM). The CPU time spent on generating the mesh is about 53 s. After the mesh is generated, the CPU
time spent on all the other calculations is on average about 8 s each time step, including 0.09 s for moving
interior nodes and 1 s for adjusting all nodes on the free surface. In this simulation, adjustment of nodes on
the free surface is performed every 40 time steps and takes about 39 s each time, so the additional CPU time
for this is roughly 1 s each time step. If the same case had been simulated using a conventional FEM with
the same mesh regenerated at each time step, the total CPU time on each time step would have been about
60 s. This implies that the QALE-FEM requires less than 15% of the CPU time required by the conven-
tional FEM. It should be noted that the time spent on adjusting nodes on the free surface depends on
how often it is undertaken. Its frequency depends on the number of time steps used each period and on
the wave steepness. The more time steps in each period, the less frequently adjustment has to be performed.
On the other hand, the steeper the waves, the more often adjustment is needed. According to our experience
so far, the adjustment frequency is unlikely to be less than every ten time steps if a reasonable time step is
chosen. Even with a frequency of every ten time steps to adjust the nodes on the free surface, the CPU time
required by using the QALE-FEM is still considerably less than that by the conventional FEM. Therefore,
it can be confidently stated that the QALE-FEM is much faster than the conventional FEM when using
unstructured meshes.
7. Conclusion

In this paper, the QALE-FEM is developed to simulate nonlinear water waves based on the FNPT model.
In this method, the boundary value problem about the velocity potential is solved by using a finite element
method and the mesh is moved in order to conform to the wavy free surface and other moving boundaries.
The method allows the efficient use of unstructured meshes without the need to regenerate it at every time
step, which is a necessary and very costly feature of the conventional FEM. To achieve overall high effi-
ciency and accuracy, several numerical techniques involved in the QALE-FEM have been developed,
including the method to move interior nodes, the technique to re-distribute the nodes on the free surface,
the scheme to compute velocities, and so on.

The newly developed method has been validated by comparing its numerical predictions with published
analytical solutions, experimental data and results from other methods. The validation cases included the
monochromatic, bichromatic and random waves and also included the interaction between waves and peri-
odic bars on the seabed. In all cases, the results given by the present method agree well with published data.
Assessments are made on the efficiency of moving mesh and quality of elements obtained by moving the
mesh, which shows that unstructured mesh quality is satisfactorily maintained and the QALE-FEM re-
quires only a small fraction of CPU time that would be spent on using the conventional FEM if unstruc-
tured mesh is used.

Although the newly developed method is applied only to problems without floating bodies in this paper,
it is not very difficult to extend it to deal with problems with floating bodies. When floating bodies are in-
volved, the nodes on the body surfaces may be adjusted in a way similar to that for the free surface.
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